Brief Communications Bulk Loading of Calcium Indicator Dyes to Study Astrocyte Physiology: Key Limitations and Improvements Using Morphological Maps

نویسندگان

  • Alexander M. B. Reeves
  • Eiji Shigetomi
  • Baljit S. Khakh
چکیده

Calcium signaling has been studied in astrocyte cell bodies using bulk loading of calcium indicator dyes, and astrocytes are known to display intracellular calcium transients. An assumption in recent data on the neuronal impact of somatic astrocyte calcium transients has been that bulk loading reflects signaling in relevant astrocyte compartments such as processes. We assessed bulk loading using Sholl analysis (Sholl, 1953) of astrocytes loaded with common calcium indicator dyes and compared these data with Sholl analysis of astrocyte morphology. In the CA1 region of the hippocampus from rats, we found that bulk loading of calcium indicator dyes only reports on calcium signals within the soma and in the most proximal processes, leaving 90% of the area of an astrocyte and its extensive processes unsampled. By using morphological reconstructions as “maps” after the imaging session, we present simple procedures that remedy these shortfalls and permit reliable detection of calcium transients in distal astrocyte processes. The data thus reveal limitations in the interpretation of astrocyte calcium imaging data gathered with bulk loading and provide refinements to minimize these shortcomings.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bulk loading of calcium indicator dyes to study astrocyte physiology: key limitations and improvements using morphological maps.

Calcium signaling has been studied in astrocyte cell bodies using bulk loading of calcium indicator dyes, and astrocytes are known to display intracellular calcium transients. An assumption in recent data on the neuronal impact of somatic astrocyte calcium transients has been that bulk loading reflects signaling in relevant astrocyte compartments such as processes. We assessed bulk loading usin...

متن کامل

Npgrj_nmeth_706 1..7

Glial cells have been identified as key signaling components in the brain; however, methods to investigate their structure and function in vivo have been lacking. Here, we describe a new, highly selective approach for labeling astrocytes in intact rodent neocortex that allows in vivo imaging using two-photon microscopy. The red fluorescent dye sulforhodamine 101 (SR101) was specifically taken u...

متن کامل

Genetically encoded calcium indicators and astrocyte calcium microdomains.

The discovery of intracellular Ca(2+) signals within astrocytes has changed our view of how these ubiquitous cells contribute to brain function. Classically thought merely to serve supportive functions, astrocytes are increasingly thought to respond to, and regulate, neurons. The use of organic Ca(2+) indicator dyes such as Fluo-4 and Fura-2 has proved instrumental in the study of astrocyte phy...

متن کامل

Large-scale imaging of cortical network activity with calcium indicators.

Bulk loading of calcium indicators has provided a unique opportunity to reconstruct the activity of cortical networks with single-cell resolution. Here we describe the detailed methods of bulk loading of AM dyes we developed and have been improving for imaging with a spinning disk confocal microscope.

متن کامل

Preferential loading of bergmann glia with synthetic acetoxymethyl calcium dyes.

The cerebellar cortex contains two astrocyte types: the Bergmann glia of the molecular layer and the velate protoplasmic astrocytes of the granule cell layer. In vivo, these cell types generate both subcellular calcium transients and trans-glial calcium waves. This protocol outlines a method for in vivo calcium imaging in cerebellar astrocytes of mice which have undergone a cerebellar craniotom...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011